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1 Amino Acid Composition

1.1 Amino Acid Composition (AAC)

The amino acid composition method [1] calculates the frequency of each
natural amino acid in the sequence.

AAC(t) =
N(t)

N
, t ∈ A

Where A is the group of the 20 natural amino acids, N(t) is the number
of times amino acid t appears in the sequence, and N is the sequence length.

Vector length 20

Parameters None

1.2 Dipeptide Composition (DPC)

The dipeptide composition method [1] calculates the frequency of each con-
secutive amino acid pair in the sequence.

DPC(t, u) =
N(t, u)

N − 1
, t, u ∈ A

Where A is the group of the 20 natural amino acids, N(t, u) is the number
of times amino acid pair t, u appears in the sequence, and N is the sequence
length.

Vector length 400

Parameters None
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1.3 Tripeptide Composition (TPC)

The tripeptide composition method [1] calculates the frequency of each con-
secutive amino acid triplet in the sequence.

TPC(t, u, v) =
N(t, u, v)

N − 2
, t, u, v ∈ A

Where A is the group of the 20 natural amino acids, N(t, u, v) is the
number of times amino acid triplet t, u, v appears in the sequence, and N is
the sequence length.

Vector length 400

Parameters None

1.4 Composition of k-Spaced Amino Acid Pairs (CK-
SAAP)

The composition of k-spaced amino acid pairs method [2] calculates the fre-
quency of amino acid pairs separated by k characters.

CKSAAP (t, u, k) =
N(t, u)

N − 1
, t, u ∈ A, k between 0 and K

Where A is the group of the 20 natural amino acids, N(t, u) is the num-
ber of times amino acid pair t, u, separated by k characters, appears in the
sequence, N is the sequence length and K is the maximum number of k. Two
consecutive characters are separated by k = 0. If K = 5, then each possible
pair would be calculated for k = 0, 1, 2, 3, 4 and 5.

Vector length (K + 1) ∗ 400

Parameters

� --gap K, default 5
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1.5 Dipeptide Deviation from Expected Mean (DDE)

The dipeptide deviation from expected mean method [3] calculates the dipep-
tide composition (D), theoretical mean (M) and theoretical variance (V ) and
applies the following formulas:

D(t, u) =
N(r, s)

N − 1
r, s ∈ A

M(t, u) =
N(r)

N
∗ N(s)

N

V (t, u) =
M(r, s)(1−M(r, s))

N − 1

DDE(t, u) =
D(r, s)−M(r, s)√

V (r, s)

Where A is the group of the 20 natural amino acids, N(t, u) is the number
of times the amino acid pair t, u appears in the sequence, N(r) and N(s) are
the number of times the amino acid r or s appears in the sequence, and N
is the sequence length.

Vector length 400

Parameters None

1.6 Amino Acid Pair Antigenicity Scale (AAPAS)

In the amino acid pair antigenicity scale method [4], for each existing amino
acid pair, it counts the number of times they appear consecutively in the
sequence and multiplies them by their normalized amino acid pair antigenic-
ity scale, which can be understood as the chance each amino acid pair is
associated with an epitope.

AAP (t, u) = N(t, u) ∗R(t, u), t, u ∈ A

Where A is the group of the 20 natural amino acids, N(t, u) is the number
of times the amino acid pair t, u appears in the sequence and R(t, u) is the
normalized amino acid pair antigenicity scale for the pair t, u.
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The values of R(t, u) are in Supplementary Material 2. They were calcu-
lated as follows:

RAAP = 2

 log
(

f(t,u)+

f(t,u)−

)
−min

max−min

− 1, t, u ∈ A

Where f(t, u)+ and f(t, u)− are the frequencies of the amino acid pair
t, u in the epitopes (obtained from the Bcipep database) [5] and non-epitopes
(obtained from the Swiss-Prot database) [6], respectively.

Vector length 400

Parameters None

1.7 Composition Moment Vector (CMV)

The composition moment vector method [7] contains information of the posi-
tion of each occurence for each amino acid in the sequence in its calculation.

CMV (t) =
1

N(N − 1)

N∑
i=1

i if ni = t, 0 if not, t ∈ A

Where A is the group of the 20 natural amino acids, ni is the ith residue
in the sequence and N is the sequence length.

Vector length 20

Parameters None

1.8 Enhanced Amino Acid Composition (EAAC)

The enhanced amino acid composition method [8] calculates the frequency
of each natural amino acid in a sliding window across the whole sequence.

EAAC(t, wi) =
N(t, wi)

W
, t ∈ A, for all i between 1 and N −W
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Where A is the group of the 20 natural amino acids, N(t, wi) is the number
of times amino acid t appears in the sliding window wi and W is the size of
the sliding window. For example, the first sliding window w1 would go from
the first amino acid n1 to the amino acid ns, while the second sliding window
would go from the second amino acid n2 to the amino acid ns+1.

Vector length (N −W + 1) ∗ 20

Parameters

� --window W , default 5

All sequences must have the same length

2 Grouped Amino Acid Composition

2.1 Grouped Amino Acid Composition (GAAC)

The grouped amino acid composition method [8] finds the proportion of each
of the five group of proteins in the sequence. These five groups are based on
their physicochemical properties, which are aliphatic (AGILMV), aromatic
(FWY), positive (HKR), negative (DE) and uncharged (CNPQST) [9].

GAAC(g) =
N(g)

N
, g ∈ G

Where G are the 5 groups based on the amino acids’ physicochemical
properties, N(g) is the number of times an amino acid belonging to the
group g appears and N is the sequence length.

Vector length 5

Parameters None

2.2 Enhanced Grouped Amino Acid Composition (EGAAC)

The enhanced grouped amino acid composition method [8] finds the propor-
tion of each of the five group of proteins in a sliding window across the peptide
sequence. These five groups are based on their physicochemical properties,
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which are aliphatic (AGILMV), aromatic (FWY), positive (HKR), negative
(DE) and uncharged (CNPQST) [9].

EGAAC(g, wi) =
N(g, wi)

W
, g ∈ G, for all i between 1 and N −W

Where G are the 5 groups based on the amino acids’ physicochemical
properties, N(g, wi) is the number of times an amino acid belonging to the
group g appears in the sliding window wi and W is the window size.

Vector length (N −W + 1) ∗ 5

Parameters

� --window W , default 5

All sequences must have the same length

2.3 Composition of k-Spaced Amino Acid Group Pairs
(CKSAAGP)

The composition of k-spaced amino acid group pairs method [8] calculates the
frequency of amino acid pairs, grouped by their physicochemical properties
as in GAAC, separated by k characters.

CKSAAGP (g, h, k) =
N(g, h)

N − 1
, g, h ∈ G, k between 0 and K

Where G are the 5 groups based on the amino acids’ physicochemical
properties, N(g, h) is the number of times amino acids from the groups g, h,
separated by k characters, are paired in the sequence, N is the sequence
length and K is the maximum number of k. Two consecutive characters are
separated by k = 0. If K = 5, then each possible pair would be calculated
for k = 0, 1, 2, 3, 4 and 5.

Vector length (K + 1) ∗ 25

Parameters

� --gap K, default 5
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2.4 Grouped Dipeptide Composition (GDPC)

The grouped dipeptide composition method [8] calculates the frequency of
each consecutive amino acid group pair in the sequence.

GDPC(g, h) =
N(g, h)

N − 1
, g, h ∈ A

Where G are the 5 groups based on the amino acids’ physicochemical
properties, N(g, h) is the number of times amino acids from the groups g, h
appear consecutively in the sequence, and N is the sequence length.

Vector length 25

Parameters None

2.5 Grouped Tripeptide Composition (GTPC)

The grouped tripeptide composition method [8] calculates the frequency of
each consecutive amino acid group triplet in the sequence.

GTPC(g, h, i) =
N(g, h, i)

N − 1
, g, h, i ∈ A

Where G are the 5 groups based on the amino acids’ physicochemical
properties, N(g, h, i) is the number of times amino acids from the groups
g, h, i appear consecutively in the sequence, and N is the sequence length.

Vector length 125

Parameters None

2.6 Encoding Based on Grouped Weight (EBGW)

For the encoding based on grouped weight method [10], the amino acids are
split in 4 groups, based on their hydrophobicity and charge:

Neutral and non-polarity C1 = A,F,G, I, L,M, P,W, V

Neutral and polarity C2 = C,N, S, T,Q, Y
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Acidic C3 = D,E

Basic C4 = H,K,R

Then, they are combined into the following groups:

� G1 = C1 + C2

� G2 = C1 + C3

� G3 = C1 + C4

And then each amino acid would have an associated value for each group
in the following way:

G1(ni) =

{
1 if ni ∈ C1 + C2

0 if ni /∈ C1 + C2

G2(ni) =

{
1 if ni ∈ C1 + C3

0 if ni /∈ C1 + C3

G3(ni) =

{
1 if ni ∈ C1 + C4

0 if ni /∈ C1 + C4

So, if an amino acid belongs to, for example, group C2, then it would
pre-encode as 1 for the first group G1, and 0 for the other ones. If it belongs
to group C1, it would pre-encode as 1 for every group. This results in three
binary sequences Hj, one per group, with N length, being N the sequence
length, and j is a number between 1 and 3.

Hj(n) = Gj(n0), Gj(n1), . . . , Gj(nN)

The full table associating amino acids with its group value can be found
in Supplementary Material 2.

The normalized weight w(n) of a characteristic sequence Hj(n) is the
frequency of 1 appearing in it.

w(n) =
Gj(n0) +Gj(n1) + . . .+Gj(nN)

N
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Given a number K, the characteristic sequence Hj(n) can be split into
K subsequences. This way, Hj⌊nk/L⌋ represents a subsequence, where
1 ≤ k ≤ K, and ⌊∗⌋ is the largest integer below the result of the division
inside. Joining all k values would yield the whole characteristic sequence.
Hence, wj⌊nk/L⌋ is the normalized weight of the subsequence Hj⌊nk/L⌋.
This results in the following weight characteristic sequence:

Wj = wj⌊n/L⌋, wj⌊n2/L⌋, . . . , wj⌊nL/L⌋

Finally, all three vectors (one per j) are concatenated.

EBGW = W1 +W2 +W3

Vector length 3K

Parameters

� --k K, default 30

3 Quasi-Sequence-Order

Both quasi-sequence-order and sequence-order-coupling number encodings
[11] use the Grantham [12] and the Schneider-Wrede [13] distance matrices.

The l-th rank sequence-order-coupling number is a sum of squares of the
distance (according to the distance matrices) between two amino acids that
are separated by g characters in the sequence.

SOCl =
N−l∑
i=1

(li,i+l)
2, 1 ≤ l ≤ L

Where li,i+l is the value in a distance matrix between two amino acids at
positions i and i− l, L is the maximum value of the lag value l, and N is the
sequence length.
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3.1 Sequence-Order-Coupling Number (SOCN)

This encoding is the concatenation of all SOCl per distance matrix.

Vector length 2L

Parameters

� --lag L, default 30

3.2 Quasi-Sequence-Order (QSO)

First, the quasi-sequence-order numbers for the amino acids must be calcu-
lated as follows:

QSOt =
fr

1 + w
∑L

l=1 SOCl

, t ∈ A

Where A is the group of the 20 natural amino acids, fr is the frequency
of each amino acid in the sequence (just as in AAC encoding), and w is a
weight factor.

Then, the quasi-sequence-order numbers for the lag values must be cal-
culated as follows:

QSOl =
w ∗ SOCl − 20

1 + w
∑m

m=1 SOCm

, 1 ≤ l ≤ L

Where A is the group of the 20 natural amino acids, fr is the frequency
of each amino acid in the sequence (just as in AAC encoding), l is a the lag
value, and w is a weight factor.

Vector length 2L+ 40

Parameters

� --lag L, default 30

� --weight w, default 0.1
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4 Autocorrelation

The autocorrelation descriptors use the amino acid properties from the AAin-
dex Database [14], found in the data/AAidx.txt file. The default indices
used (CIDH920105, BHAR880101, CHAM820101, CHAM820102, CHOC760101,
BIGC670101, CHAM810101, DAYM780201) were taken from the work by
Xiao et al. [15]. All the values in the indices are centralized and standard-
ized for the autocorrelation encodings as follows:

Pt =
Pt − P̄

σ
, t ∈ A

Where A is the group of the 20 natural amino acids, Pt is the value of
the property for the amino acid t, and P̄ and σ are the average and standard
deviation of all the 20 amino acids in the index, respectively.

P̄ =

∑20
i=1 Pi

20

σ =

√√√√ 1

20

20∑
i=1

(Pi − P̄ )2

4.1 Geary Autocorrelation (Geary)

The Geary autocorrelation [16] is calculated as:

Geary(l) =

1
2(N−l)

∑N−l
i=1 (Pi − Pi+l)

2

1
N−1

∑N
i=1(Pi − P̄ ′)2

, 1 ≤ l ≤< L

Where l is the lag value, L is the maximum lag value, Pi and Pi+l are the
centralized and standardized values for the amino acids at positions i and
i + l, and P̄ ′ is the average property value between all amino acids in the
sequence.

P̄ ′ =

∑N
n=1 Pi

N
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Vector length L ∗X, where X is the count of used indices.

Parameters

� --lag L, default 30

� --indices indices, default ’CIDH920105, BHAR880101, CHAM820101,
CHAM820102, CHOC760101, BIGC670101, CHAM810101, DAYM780201’
(X = 8).

4.2 Moran Autocorrelation (Moran)

The Moran autocorrelation [17] is calculated as:

Moran(l) =
1

N−l

∑N−l
i=1 (Pi − P̄ ′)(Pi+l − P̄ ′)
1

N−1

∑N
i=1(Pi − P̄ ′)2

, 1 ≤ l ≤< L

Where l is the lag value, L is the maximum lag value, Pi and Pi+l are the
centralized and standardized values for the amino acids at positions i and
i + l, and P̄ ′ is the average property value between all amino acids in the
sequence.

P̄ ′ =

∑N
n=1 Pi

N

Vector length L ∗X, where X is the count of used indices.

Parameters

� --lag L, default 30

� --indices indices, default ’CIDH920105, BHAR880101, CHAM820101,
CHAM820102, CHOC760101, BIGC670101, CHAM810101, DAYM780201’
(X = 8).

4.3 Normalized Moreau-Broto Autocorrelation (NMB)

The Normalized Moreau-Broto autocorrelation [18] is calculated as:
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NMB(l) =

∑N−l
i=1 Pi ∗ Pi+l

N − l
, 1 ≤ l ≤< L

Where l is the lag value, L is the maximum lag value, and Pi and Pi+l

are the centralized and standardized values for the amino acids at positions
i and i+ l.

Vector length L ∗X, where X is the count of used indices.

Parameters

� --lag L, default 30

� --indices indices, default ’CIDH920105, BHAR880101, CHAM820101,
CHAM820102, CHOC760101, BIGC670101, CHAM810101, DAYM780201’
(X = 8).

5 Composition/Transition/Distribution

The Composition/Transition/Distribution encodings [19, 20] are based on a
categorical division of the 20 natural amino acids according to their structural
and physicochemical properties. 13 properties were chosen on iFeature [8],
and 1 (surface tension) was added [21], as listed in Supplementary Material
2.

5.1 Composition (CTDC)

Calculates the frequency of each division per property.

C(d) =
N(d)

N

Where N(d) is the number of amino acids in the division d found in the
sequence, and N is the sequence length.

Vector length 42

Parameters None

13



5.2 Transition (CTDT)

Calculates the frequency of each transition (division 1 to division 2, division
1 to division 3, etc.) per property between consecutive amino acids.

T (d, e) =
N(d, e) +N(e, d)

N − 1

Where N(d, e) and N(e, d) are the numbers of consecutive amino acids
from divisions d and e in both orders (de and ed), and N is the sequence
length.

Vector length 42

Parameters None

5.3 Distribution (CTDD)

Calculates where the first, 25%, 50%, 75% and 100% of amino acids in a
division occur in a sequence. It is done by highlighting all the amino acids
that belong to a certain division in a sequence. Find the position of the first
occurence and divide it by N (the sequence length). Then, find the position
where the first 25% (rounded down) of the amino acids in that division occurs
in the sequence, and divide this position over N . After that, do the same
with the other percentages (Figure 1).

Vector length 210

Parameters None

6 Conjoint Triad

For the conjoint triad encodings, the amino acids were classified in 7 classes
based on the dipoles and volumes of the side chains [22]: {A,G, V }, {I, L, F, P},
{Y,M, T, S}, {H,N,Q,W}, {R,K}, {D,E}, and {C}.
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Figure 1: The example sequence has 20 amino acids, where 8 of them belong to polarity
group A, 5 to group B and 7 to group C. For group C, the first occurence is at position 4,
so the distribution value is 0.2 (4/20). The amino acid at the 25% mark is also position 4
because it is the first (⌊7 ∗ 0.25⌋ = 1) amino acid of group C, so the distribution value is
0.2. The amino acid at the 50% mark is at position 10 because it is the third (⌊7∗0.5⌋ = 3)
amino acid of group C, so the distribution value is 0.5 (10/20). The amino acid at the
75% mark is at position 14 because it is the fifth (⌊7 ∗ 0.75⌋ = 5) amino acid of group C,
so the distribution value is 0.7 (14/20). Finally, last amino acid of group C is at position
18, so the distribution value is 0.9 (18/20).

6.1 Conjoint Triad (CT)

The conjoint triad method [22] is calculated as:

CTi,j,k =
ni,j,k −min{n1,1,1, n1,1,2, . . . , n7,7,7}

max{n1,1,1, n1,1,2, . . . , n7,7,7}

Where ni,j,k is the number of times three consecutive amino acids belong-
ing to groups i, j and k are seen in the sequence.

Vector length 343

Parameters None

6.2 k-Spaced Conjoint Triad (KSCT)

The k-Spaced conjoint triad method [8] is based on the conjoint triad method,
but instead of only evaluating consecutive amino acids, it evaluates triads
separated by 0 to K characters. The original CT method is the same as
KSCT with K = 0.

KSCTh,i,j =
nh,i,j −min{n1,1,1, n1,1,2, . . . , n7,7,7}

max{n1,1,1, n1,1,2, . . . , n7,7,7}
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Where nh,i,j is the number of times three consecutive amino acids belong-
ing to groups h, i and j are seen in the sequence. This should be evaluated
for 0 ≤ k ≤ K, so it is calculated k + 1 times. For example, for k = 0,
each triad is formed by the amino acids at positions i, i + 1 and i + 2 for
1 ≤ i ≤ N − 2. For k = 1, each triad is formed by the amino acids at
positions i, i+2, i+4 for 1 ≤ i ≤ N − 4. For k = 2, each triad is formed by
the amino acids at positions i, i+ 3, i+ 6 for 1 ≤ i ≤ N − 6.

Vector length 343K

Parameters

� --k K, default 1.

7 Pseudo-Amino Acid Composition

The pseudo-amino acid composition encodings use the hydrophobicity values
proposed by Tanford [23], the hydrophilicity values proposed by Hopp and
Woods [24] and the side chain mass values are the standard ones. Their
initial values are represented by H0

1 (t), H
0
2 (t) and M0(t), where t is each of

the 20 natural amino acids. These values are centralized and standardized
as follows:

P (t) =
P 0(t)− 1

20

∑20
i=1 P

0(i)√∑20
i=1[P

0(i)− 1
20

∑20
j=1 P

0(i)]2

20

, t ∈ A

Where A is the group of the 20 natural amino acids, and P (t) represents
the centralized and standardized value of any of the three properties (H1,
H2, M) of the amino acid t, so in the end we would have H1(t), H2(t) and
M(t).

7.1 Pseudo-Amino Acid Composition (PAAC)

For the pseudo-amino acid composition method [11], a correlation function
is calculated as:

ρ(t, u) =
1

3
{[H1(t)−H1(u)]

2 + [H2(t)−H2(u)]
2[M(t)−M(u)]2}, t, u ∈ A
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Where A is the group of the 20 natural amino acids. Then, the sequence-
order-correlated factors are computed as follows:

fl =
1

N − l

N−l∑
j=1

ρ(tj, tj+l), 1 ≤ l ≤ L, t ∈ A

Where L is the maximum lag value. Now, the first 20 features (one per
amino acid in A) are computed.

PAACt =
N(t)

1 + w
∑L

i=1 fi

Where N(t) is the number of times the amino acid appears in the se-
quence, and w is a weighting factor set by default as 0.05, as suggested by
Chou et al. [11]. Finally, the last set of features are added to the vector.

PAACl =
wfl

1 + w
∑L

j=1 fj
, 1 ≤ l ≤ L

Vector length 20 + L

Parameters

� --lag L, default 30

� --weight w, default 0.05

7.2 Amphiphilic Pseudo-Amino Acid Composition (APAAC)

The amphiphilic pseudo-amino acid composition method [25] only uses the
hydrophilicity (H1) and hydrophobicity (H2) values. These values are used
to define their correlation functions as:

H1(t, u) = H1(t)H1(u), t, u ∈ A

H2(t, u) = H2(t)H2(u), t, u ∈ A

17



Where A is the group of the 20 natural amino acids. Now, the sequence-
order can be found with the following formula:

fl =
1

N − l

N−l∑
j=1

H1(i, i+ l), 1 ≤ l ≤ 2L

Where L is the maximum lag value. Now, the first 20 features (one per
amino acid in A) are computed.

APAACt =
N(t)

1 + w
∑2

i=1 Lfi

Where N(t) is the number of times the amino acid appears in the se-
quence, and w is a weighting factor set by default as 0.05, as suggested by
Chou et al. [11]. Finally, the last set of features are added to the vector.

APAACl =
wfl

1 + w
∑2

j=1 Lfj
, 1 ≤ l ≤ L

Vector length 20 + 2L

Parameters

� --lag L, default 30

� --weight w, default 0.05

8 Binary

8.1 Binary

The binary encoding [26] represents each amino acid in the sequence as a bi-
nary string of 20 numbers. For example, amino acid A is ”10000000000000000000”,
C is ”01000000000000000000”, etc., following the order of ”ACDEFGHIKLM-
NPQRSTVWY”.

Vector length 20N , where N is the sequence length

Parameters None

All sequences must have the same length
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8.2 Taylor’s Venn Diagram (TVD)

The Taylor’s venn diagram method [27] is based on 10 physicochemical
groups (hydrophobic, positive, negative, polar, charged, small, tiny, aliphatic,
aromatic, proline) where the 20 natural amino acids might belong to. These
amino acids are encoded as binary vectors of length 10 (1 per property),
getting a 1 if the amino acid belonging to the group that has that property.
For example, if the amino acid belongs to the hydrophobic group, it will get
1, and if not, it will get 0.

TV Dp(t) =

{
1 if t ∈ p

0 if t /∈ p
, t ∈ A

Where p is a property and A is the set of the 20 natural amino acids.
The full table with the binary values is found in Supplementary Material 2.

Vector length N , where N is the sequence length

Parameters None

All sequences must have the same length

9 Pseudo k-Tuple Reduced Amino Acid Com-

position (PseKRAAC)

The pseudo k-tuple reduced amino acid composition [28] represents proteins
as vectors that contain information based on K-tuples of reduced amino acid
cluster (RAACK) components. These components can depend on a g-gap
or a λ-correlation, a type of reduced amino acid alphabet and a number of
clusters (or mode). These types and modes, as well as the groups, are found
in Supplementary Material 2.

For the g-gap type of calculation, it represents the sequence-order infor-
mation of subsequences of length K separated by g residues. Thus, it counts
the number of times a combination of groups in the selected RAAC appears
(Figure 2).

For the λ-correlation type of calculation, it represents the sequence-order
information of groups of amino acids separated by λ residues between amino

19



Figure 2: In this example, for type 1, mode 3, K = 2, there are 9 possible combinations
between the three groups in mode 3 (modeK , so 32 = 9). The sequence ”GIALPMN” has
each amino acid mapped to groups 2, 1, 2, 1, 2, 1, 3, respectively. If the g value is set to
0, it evaluates pairs without interleaving residues in between, so the combination (2, 1)
appears 3 times, (1, 2) appears 2 times and (1, 3) appears once, while the other 6 possible
groups have 0 occurences. These are the values in the resulting vector. If the g value is set
to 1, it evaluates pairs interleaving one residue between pairs, so the found combinations
are (2, 1), (2, 1) and (2, 1), which makes it 3 occurences for (2, 1) and 0 for the other
combinations.

Figure 3: In this example, for type 1, mode 3, K = 2, there are 9 possible combinations
between the three groups in mode 3 (modeK , so 32 = 9). The sequence ”GIALPMN”, has
each amino acid mapped to groups 2, 1, 2, 1, 2, 1, 3, respectively. If the λ value is set to
1, it evaluates consecutive pairs, so the combination (2, 1) appears 3 times, (1, 2) appears
2 times and (1, 3) appears once, while the other 6 possible groups have 0 occurences.
These are the values in the resulting vector. If the λ value is set to 2, it evaluates pairs
interleaving one residue between amino acids, so the found combinations are (2, 2), (1,
1), (2, 2), (1, 1) and (2, 3), which makes it 2 occurences for (2, 2), 2 occurences for (1, 1),
1 occurence for (2, 3) and 0 for the other combinations.

acids. Thus, it counts the number of times a combination of groups in the
selected RAAC appears (Figure 3).
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Vector length modeK

Parameters

� --type type, required

� --raactype mode, required.

� --subtype subtype, required. g-gap or lambda-correlation

� --ktuple K, default 2. Can be 1, 2 or 3.

� --gapLambda gapLambda, required. Value for g or λ, depending
on the subtype.

10 Secondary Structure with PSIPRED or

SPINE-X

These encodings use the generated .ss2 files from PSIPRED [29] or the
.spxOut files from SPINE-X [30]. There must be one file per input sequence.

10.1 Secondary Structure Elements Binary (SSEB)

The secondary structure elements binary method [8] represents each amino
acid, depending on the type of secondary structure element where they were
classified in, as a vector of 3 binary digits. The elements are helix (001),
sheet (010) and coil (100).

Vector length 3N , where N is the sequence length

Parameters

� --path, path where .ss2 and .spXout files are located. One per
input sequence.

All sequences must have the same length
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10.2 Secondary Structure Elements Content (SSEC)

The secondary structure elements content method [8] calculates the frequency
of each element type (helix, sheet, coil) found in the peptide sequence.

SSEC(e) =
N(e)

N
, e ∈ Helix, Sheet, Coil

Where N(s) is the number of times the element e appears in the sequence,
and N is the sequence length

Vector length 3

Parameters

� --path, path where .ss2 and .spXout files are located. One per
input sequence.

10.3 Secondary Structure Probabilities Bigram (SSPB)

Each amino acid in the sequence gets a probability of it having one of the
three structural elements (helix, coil, sheet). The secondary structure prob-
abilities bigram [31] sums the multiplication of the probabilities for each of
the combinations between structural elements among the pairs of amino acids
separated by n residues. This parameter n was added by us, originally it was
1.

SSPB(e, f) =
1

N

N−n∑
i=1

Pi(e) ∗ Pi+n(f), e, f ∈ {helix, coil, sheet}

Where Pi(e) and Pi+n(f) are the probabilities of the amino acids at po-
sitions i and i+ n in the sequence having the elements e and f , respectively,
and N is the sequence length.

Vector length 9

Parameters

� --path, path where .ss2 and .spXout files are located. One per
input sequence.

� --n n, default 1
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10.4 Secondary Structure Probabilities Auto-Covariance
(SSPAC)

Each amino acid in the sequence gets a probability of it having one of the
three structural elements (helix, coil, sheet). The secondary structure prob-
abilities auto-covariance method [31] sums the multiplication of the proba-
bilities for each structural element among the pairs of amino acids separated
by n residues, where n ranges from 1 to N .

SSPAC(n, e) =
1

L

L−n∑
i=1

Pi(e) ∗ Pi+n(e), 1 ≤ n ≤ N, e ∈ helix, coil, sheet

Where Pi(e) and Pi+n(e) are the probabilities of the amino acids at po-
sitions i and i+ n in the sequence having the element e, N is the maximum
value for the separation between residues, and L is the sequence length.

Vector length 3N

Parameters

� --path, path where .ss2 and .spXout files are located. One per
input sequence.

� --n N , default 10

11 Secondary Structure with SPINE-X

These encodings use the generated .spxOut files from SPINE-X [30]. There
must be one file per input sequence.

11.1 Torsional Angles (TA)

The torsion angles method [8] adds the phi and psi values per amino acid to
the vector.

Vector length 2N , where N is the sequence length.

Parameters
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� --path, path where .spXout files are located. One per input
sequence.

All sequences must have the same length

11.2 Torsional Angles Composition (TAC)

The torsional angles composition [31] converts the phi and psi values per
amino acid from degrees to radians, calculates the sine and cosine of these
two angles, divides these values by the length of the sequence, and adds the
4 final values to the vector.

TAC(f, a) =
1

N

N∑
i=1

f(
aiπ

180
), f ∈ {sin, cos}, a ∈ {phi, psi}

Where ai is the phi or psi value for the amino acid at position i in the
sequence, and N is the sequence length.

Vector length 4

Parameters

� --path, path where .spXout files are located. One per input
sequence.

11.3 Torsional Angles Bigram (TAB)

The torsional angles bigram [31] converts the phi and psi values per amino
acid from degrees to radians, and calculates the sine and cosine of these
two angles, so each amino acid has 4 associated values. Then, each type
of value is multiplied as pairs in the sequence separated by n residues, and
finally divided by the sequence length. This parameter n was added by us,
originally it was 1.

TAB(f, g, a, n) =
1

N

N−n∑
i=1

f(
aiπ

180
) ∗ g(ai+nπ

180
), f, g ∈ {sin, cos}, a ∈ {phi, psi}

Where ai and ai+n are the phi or psi values for the amino acid at position
i and i+ n in the sequence, and N is the sequence length.
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Vector length 10

Parameters

� --path, path where .spXout files are located. One per input
sequence.

� --n n, default 1.

11.4 Torsional Angles Autocovariance (TAAC)

The torsional angles auto-covariance method [31] converts the phi and psi
values per amino acid from degrees to radians, and calculates the sine and
cosine of these two angles, so each amino acid has 4 associated values. Then,
it sums the multiplication of each type of value among the pairs of amino
acids separated by n residues, where n ranges from 1 to N .

TAAC(f, a, n) =
1

L

L−n∑
i=1

f(
aiπ

180
) ∗ f(ai+nπ

180
), f ∈ {sin, cos}, a ∈ {phi, psi}, 1 ≤ n ≤ N

Where ai and ai+n are the phi or psi values for the amino acid at position
i and i + n in the sequence, N is the maximum value for the separation
between residues, and L is the sequence length.

Vector length 4N

Parameters

� --path, path where .spXout files are located. One per input
sequence.

� --n N , default 10.

11.5 Accessible Surface Area (ASA)

The accessible surface area method [8] reads the ASA values per amino acid
and adds them to the vector.

Vector length N , where N is the sequence length.

Parameters
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� --path, path where .spXout files are located. One per input
sequence.

All sequences must have the same length

12 Disorder

The disorder-based methods use the generated .dis files generated by VSL2
[32]. There must be one file per input sequence.

12.1 Disorder

The disorder method [33] reads the probability values per amino acid and
adds them to the vector.

Vector length N , where N is the sequence length.

Parameters

� --path, path where .dis files are located. One per input se-
quence.

All sequences must have the same length

12.2 Disorder Content (DisorderC)

The disorder content method [8] calculates the frequency of ordered and
disordered residues in the sequence.

DisorderC(d) =
N(d)

N
, d ∈ order, disorder

Where N(d) is the number of ordered or disordered residues in the se-
quence, and N is the sequence length.

Vector length 2

Parameters

� --path, path where .dis files are located. One per input se-
quence.
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12.3 Disorder Binary (DisorderB)

The disorder binary method [8] encodes each amino acid as a binary vector
of length 2. If the residue is ordered, then it is encoded as [1, 0], and if it is
disordered, it is encoded as [0, 1].

Vector length 2N , where N is the sequence length.

Parameters

� --path, path where .dis files are located. One per input se-
quence.

All sequences must have the same length

13 k-Nearest Neighbors

The k-nearest neighbors (KNN) methods require two additional files: a train-
ing file in FASTA format that will contain a training set, and a label file,
which will contain the class each sequence corresponds to. The KNN method
uses the similarity score between every two sequences in the training file as
distance.

The K values depend on the total number of samples provided in the
training file, finding the amount of sequences in 1%, 2%, 3%, . . . , K% of the
training file. If the training file has 10 sequences, then from 1% to 10% the
value will be 1, from 11% to 20% the value will be 2, and so on.

13.1 k-Nearest Neighbors - Peptides (KNNpeptide)

The k-nearest neighbor for peptides method [34] indicates how many of the
sequences per each class in the neighboring K% from the training file are
close to the input sequence according to the similarity score s(a, b), which is
calculated as:

d(t, u) =

{
BLOSUM62(t, u) if BLOSUM62(t, u) > 0

0 if BLOSUM62(t, u) ≤ 0
, t, u ∈ A
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s(a, b) =
N∑
i=1

d(ai, bi)

Where A is the set of the 20 natural amino acids, BLOSUM62(t, u) is
the value for the amino acid pair (t, u) in the BLOSUM62 matrix, and ai and
bi are the amino acids at position i in the sequences a and b.

Vector length KC, where C is number of classes.

Parameters

� --train, path where the fasta training file is located

� --labels, path where the label file is located. All sequences in
the training file must be in the labels file.

� --k K, default 30.

All sequences must have the same length

13.2 k-Nearest Neighbors - Proteins (KNNproteins)

The k-nearest neighbor for proteins [8] indicates how many of the sequences
per each class in the neighboring k% from the training file are close to the
input sequence, according to the similarity score s(a, b), which is calculated
as:

s(a, b) =
2 ∗NW (a, b)

T +N

WhereNW (a, b) is the number of equal characters in the resulting Needleman-
Wunsch alignment [35] between sequences a and b, T is the number of training
sequences, and N is the sequence length.

Vector length KC, where C is number of classes.

Parameters

� --train, path where the fasta training file is located

� --labels, path where the label file is located. All sequences in
the training file must be in the labels file.

� --k K, default 30.

All sequences must have the same length
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14 Position-Specific Scoring Matrix (PSSM)

The position-specific scoring matrix-based methods use the generated .pssm

by blastpgp in legacy BLAST [36] and psiblast in BLAST+ [37] against
the uniref50 database [38].

14.1 Position-Specific Scoring Matrix (PSSM)

The PSSM method [33] inserts all 20 values per sequence amino acid in the
vector.

Vector length 20N , where N is the sequence length.

Parameters

� --path, path where the .pssm files are located. One per input
sequence.

All sequences must have the same length

14.2 PSSM Amino Acid Composition (PSSMAAC)

The PSSM amino acid composition method [39] calculates the average score
for each of the 20 natural amino acids along the whole sequence.

PSSMAAC(t) =
1

N

N∑
i=1

si,t, t ∈ A

Where A is the set of the 20 natural amino acids, si,t is the score in the
PSSM matrix for the amino acid t at position i in the sequence, and N is
the sequence length.

Vector length 20

Parameters

� --path, path where the .pssm files are located. One per input
sequence.
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14.3 Bigram PSSM (BiPSSM)

The bigram PSSM method [31] sums the product between the PSSM values
of two residues in the sequence separated by n characters for two amino acid
types and divides that sum by the sequence length. This parameter n was
added by us, originally it was 1.

BiPSSM(t, u) =
1

N

N−n∑
i=1

si,t ∗ si+n,u, t, u ∈ A

Where A is the set of the 20 natural amino acids, si,t and si+n,u are the
scores in the PSSM matrix for the amino acids t and u at positions i and
i+ n respectively, and N is the sequence length.

Vector length 400

Parameters

� --path, path where the .pssm files are located. One per input
sequence.

� --n n, default 1

14.4 PSSM Autocovariance (PSSMAC)

The PSSM autocovariance method [40] calculates the autocovariance between
two residues separated by n characters for a specific amino acid type.

s̄t =
1

N
sumN

i=1si,t, t ∈ A

PSSMAC(t, n) =
N−n∑
i=1

(si,t − s̄t) ∗ (si+n,t − s̄t)

N − n
, t ∈ A

Where A is the set of the 20 natural amino acids, si,t and si+n,t are the
scores in the PSSM matrix for the amino acid t at positions i and i+ n, and
N is the sequence length.
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Vector length 400

Parameters

� --path, path where the .pssm files are located. One per input
sequence.

� --n n, default 1

14.5 Pseudo-PSSM (PPSSM)

The pseudo-PSSM method [41] finds the average for every amino acid type in
the PSSM matrix, and calculates the correlation between residues separated
by n characters per each amino acid type. First, all values in the PSSM
matrix must be standardized by using the following formula:

si,t =
s0i,t − 1

20

∑20
j=1 s

0
i,j√

1
20

∑20
k=1(s

0
i,k − 1

20

∑20
j=1 s

0
i,j)

2

, t ∈ A

Where A is the set of the 20 natural amino acids, s0i,t is the initial score
in the PSSM matrix for the amino acid t at the row i, and s0i,j and s0i,k are
the initial scores in the PSSM matrix for the row i, columns j and k.

s̄t =
1

N

N∑
i=1

si,t, t ∈ A

ρt(n) =
1

N − n

N−n∑
i=1

(si,t − si+n,t)
2, t ∈ A

Where si,t and si+n,t are the standardized scores in the PSSM matrix for
the amino acid t at rows i and i+ n, and N is the sequence length.

The PPSSM vector is the concatenation of the 20 values for s̄t and the
20 values of ρt(n).

Vector length 40

Parameters
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� --path, path where the .pssm files are located. One per input
sequence.

� --n n, default 1

15 Other Encodings

15.1 Amino Acid Index (AAI)

The amino acid index method [42] uses the amino acid properties from the
AAindex Database [14]. This database has 544 different indices, where 531
have no ”NA” values for any of the 20 amino acids. The features are the
values for each amino acid in the sequence found in each one of the indices.

Vector length 531N , where N is the sequence length.

Parameters None

All sequences must have the same length

15.2 BLOSUM62

The BLOSUM62 method [43] uses the BLOSUM62 matrix to get the features,
which are all the values for the 20 amino acids in each respective row. This
means that for every amino acid in the sequence there will be 20 features.

Vector length 20N , where N is the sequence length.

Parameters None

All sequences must have the same length

15.3 Z-Scale (ZS)

The z-srancale method [44] uses the z-scale table [45], where each amino acid
type has 5 z-values. This means that for every amino acid in the sequence
there will be 5 features.

Vector length 205, where N is the sequence length.

Parameters None

All sequences must have the same length
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